innovation marketplace

TECHINNOVATION TECH OFFERS

Discover new technologies by our partners

TechInnovation 2023 showcases more than 100 latest technologies and innovations in sustainability, health and well-being and AI in healthcare from our partners in Hong Kong SAR, Korea, Japan, Singapore, Slovakia, and Thailand. Enterprises interested in these technology offers can register at www.techinnovation.com.sg to meet these technology providers and arrange for your 1-1 business meeting.

Bioaugmentation for Soil and Wastewater Treatment
Conventional soil remediation methods, such as thermal desorption, are costly and require the disposal of the resource, taking up space in landfills. These methods also alter the physical properties of the soil, which can have negative consequences for soil health and plant growth. Bioaugmentation is a promising new technology that offers a more sustainable and environmentally friendly alternative to conventional soil remediation methods. Bioaugmentation involves the addition of chemical-degrading microorganisms to the contaminated site. These microorganisms break down the pollutants into harmless byproducts, allowing the land, soil, and water to be reused. The bioaugmentation technology developed is highly portable and does not require the deployment of large machinery on-site. This makes it a cost-effective and efficient option for soil remediation, especially in remote or difficult-to-access areas. The soil after treatment is compliant with the current United States Environmental Protection Agency (US-EPA) and Australian standards (below 1,000 ppm Total Petroleum Hydrocarbons (TPH)). The technology has also been proven to be effective in tropical climates. Overall, bioaugmentation is a promising new technology that offers a more sustainable and environmentally friendly alternative to conventional soil remediation methods. It is a cost-effective and efficient option for soil remediation, especially in remote or difficult-to-access areas. The technology has also been proven to be effective in tropical climates. The technology provider is seeking a partner to test the feasibility of our treated soil for farming and land restoration purposes, and to develop a formulation for soil rehabilitation for farming and food production without the use of fertilizers.
Personalised Wearable Cooling Device
As climate change has led to hotter days, people are looking for ways to stay cool on the go. Whether for daily commutes, outdoor adventures, or work-related trips, there is a growing demand for portable cooling solutions. This technology offers a platform that can be applied to various wearable devices to cool down the human body. The battery-powered thermoelectric system is small, lightweight, and portable and can be used to create a variety of cooling products. This technology has the potential to make a real difference in people's lives. It can help people stay cool and comfortable in hot weather, which can improve their productivity, safety, and overall well-being. The technology provider is seeking collaboration partners to leverage this innovative cooling solution to develop alternative applications such as cooling sports equipment or personal protection devices.  
Efficient LoRa WAN protocol for mission critical IoT applications
An improvised LoRaWAN has been developed to enhance data transmission efficiency between LoRa trackers and LoRaWAN gateways addressing the prevalent issue of mid-air data loss due to collisions. This improved protocol enhances the data transmission rate from its current range of 10-30% to 65%. This substantial improvement leads to power savings for IoT end nodes, particularly those powered by batteries, by eliminating the need for data re-transmission. Moreover, the improved protocol also significantly increases gateway capacity, thereby reducing the capital expenditure associated with IT infrastructure.
Virus-binding Protein Technology Derived from Beans
Norovirus is a highly contagious non-enveloped virus responsible for causing >90% of viral gastroenteritis, and >50% of all gastroenteritis outbreaks worldwide. According to the WHO, norovirus causes an estimated 685 million cases of infection and 200,000 deaths per year. Its resilience poses challenges for eradication through altering pH, heat exposure, or common disinfectants. Notably, alcohol-based hand sanitisers are not as effective against this virus, according to the US CDC. To address this, a biotech company has successfully developed a novel virus-binding protein technology derived from jack beans or sword beans. This patented lectin protein exhibits antiviral properties and has demonstrated the ability to neutralise not only norovirus, but also coronavirus and Hepatitis A virus. It has also demonstrated activity against Escherichia coli bacteria.  By utilising this innovative technology, viral outbreaks can be prevented. This versatile lectin protein can be incorporated as an active ingredient into various product formulations. The technology owner is especially interested to work with companies from health service sectors, and personal care product manufacturers.
Safe and Rechargeable Water-Based Battery
To achieve a net-zero carbon emission goal, energy derived from fossil fuels are replaced with green renewables such as solar, wind, etc. However, these renewable energies are intermittent in nature and therefore requires a reliable energy storage system to store these energies. Today, batteries based on lithium-ion and lead-acid are widely used as the go-to energy storage system. However, there are fire safety concerns for the conventional lithium-ion batteries due to its highly volatile and flammable electrolyte while the acidic electrolyte and carcinogenic lead used in lead-acid posed threat to both human and environmental health. Therefore, there is a need for a new safe and environmentally friendly battery system. This technology offer is a safe and rechargeable water-based battery using a unique green electrolyte formulation (close to neutral pH). Owing to the widened electrochemical stability window and high ionic conductivity of the proposed electrolyte formulation, it enables superior electrochemical performance of the electrode materials used in the batteries, suited towards large-scale energy storage applications.
Anti-Pathogen Stainless Steel with Long-Term Inherent Antimicrobial Properties
Worldwide, infectious diseases not only affect the health of millions annually but also incur an immeasurable economic cost. The transmission of pathogenic viruses in public areas has been a long-standing issue. Stainless steel (SS) is one of the most extensively used materials in public areas and hygiene facilities, such as door handles, elevator buttons, handrails, countertops, etc. However, SS lacks inherent properties to combat pathogen microbes on its surfaces, posting a high risk of disease transmission among people via surface touching. Additionally, certain pathogens, like SARS-CoV-2, exhibit strong stability on SS surfaces, with viable viruses detected even after three days. To address this challenge, the technology owner has developed anti-pathogen stainless steel, which is a significant breakthrough in the field of anti-microbial SS. It stands as the world’s first SS capable of combating the severe acute respiratory syndrome coronavirus 2 (SARS-Cov-2) on its surface. Furthermore, its antimicrobial properties are broad-spectrum and can inactivate many other pathogen microbes, such as the H1N1 influenza A virus (H1N1) and Escherichia coli (E. coli). Unlike surface coatings that may wear off over time, the antimicrobial precipitates are permanently embedded in the whole SS matrix, providing long-term inherent antimicrobial properties. Thus, this anti-pathogen SS can effectively and chronically inactivate pathogen microbes even though its surface is continuously damaged. The technology owner is keen to do R&D collaboration and licensing to application developers intending to implement anti-pathogen SS in various industries.
Simple and Energy-Saving Bituminous Waterproofing Coating without Heating
Bitumen is widely used as an essential binder for many applications due to its excellent adhesive properties, waterproofing, and high durability. However, the conventional application of bitumen involves on-site melting at high temperature exceeding 250°C, necessitating rapid pouring on the surface with additional torch-on, which poses complications and safety risks. Moreover, the on-site melting process releases harmful gases, including hydrogen sulphide and volatile organic compounds (VOCs), endangering workers and nearby areas. To address these challenges, there is a need to develop a safer form of bitumen that does not compromise material performance. This technology transforms solid bitumen into a single-component liquid bituminous coating at room temperature via a simple and cost-effective formulation using solvents, fillers, and additives. The fillers used in the single-component liquid bituminous coating can be made from waste materials such as food waste. Such sustainable fillers could offer comparable material performance to conventional industrial fillers. This high-performance bituminous coating has excellent workability at room temperature, fast drying, and easy production without the need for heating. Thus, this technology eliminates the hazards associated with conventional application of bitumen, providing a safe and energy-saving alternative. One practical application of this technology is a roof waterproofing system that complies with Singapore standards SS133:2017 and/or SS374:1994 (2023). This technology is available for R&D collaboration, IP licensing, and test-bedding with industrial partners in the construction and infrastructure sectors.  
Eco-friendly Direct Conversion of Biogas into Liquid Fuels
Liquid fuels from biogas are a promising source of renewable and clean energy as they give a lower emission of sulphur dioxide, nitrogen oxide, and soot than conventional fossil fuels. They are sustainable and economically viable as they can be obtained from agricultural waste. However, transforming biogas into a high-value liquid fuel equivalent to diesel or gasoline requires a costly two-step process.  The technology developer has developed a novel enhanced capsule catalysts with unique core-shell structures that enable the production of high value-added liquid fuels from biogas in a single step with only one reactor. These capsule catalysts directly convert synthetic gas (syngas) into liquid fuels, which have improved petrol-like qualities. Therefore, these liquid fuels can be used either as diesel or gasoline substitutes without any modification to engines and existing refuelling facilities. The technology developer seeks companies looking for renewable and clean energy through the gas-to-liquid (GTL) technology to license and commercialise this technology. 
Green-Light Wavelength-Selective Organic Solar Cell for Greenhouse
The development of next-generation greenhouses in agriculture is driving a growing demand for innovative systems that can address both energy and food challenges simultaneously. Currently, agriculture heavily relies on fossil fuels, particularly heavy oil, as its primary energy source, new technologies must be explored to significantly reduce greenhouse gas emissions, such as carbon dioxide. Ensuring a stable food supply is crucial for increasing self-sufficiency rates, but the installation of traditional silicon solar cells has presented challenges due to shading effects, leading to reduced crop yields. Consequently, the absence of suitable solar cell technology for greenhouses poses critical problems for both power generation and food supply. Under this situation, green-light wavelength-selective organic solar cells (OSCs) have been developed, whose transmitted blue and red light can be effectively used to promote plant growth. Furthermore, green light can be effectively utilized for power generation and can be used as a source of electricity for greenhouses. Furthermore, this green light can be effectively utilized for power generation and can be used as a source of electricity for greenhouses. This green-light wavelength-selective OSCs can be installed on the entire roof of greenhouses due to the advantages of light weight, flexible, and large area. This green-light wavelength-selective OSCs can be installed into the entire roof of greenhouses due to the advantages of light weight, flexible, and large area. This technology enables efficient utilization of solar energy for both power generation and agriculture.