innovation marketplace

TECH OFFERS

Discover new technologies by our partners

Leveraging our wide network of partners, we have curated numerous enabling technologies available for licensing and commercialisation across different industries and domains. Enterprises interested in these technology offers and collaborating with partners of complementary technological capabilities can reach out for co-innovation opportunities.

Ultra Low-Profile Millimeter Wave Radar with Lensed Antennae
Reduction in size of the radar unit, and the consequent improvement in mounting options, is critical for increased adoption of millimeter wave radars. The technology presented here showcases an ultra low-profile radar module using a patented lensed antennae design. Millimeter wave radars offer key benefits - - Less affected by darkness, heavy rain, blizzards and other environment factors. - Presence and movement monitoring of a person while preserving privacy. - Concealed installation as millimeter waves penetrate obstacles such as walls and glass. The ultra low profile of the new radar allows easier installation and thus facilitates use in multiple new fields. Till now used mainly in automotive sector, the new compact radar can now be used for bikes, outdoor surveillance and disaster response. The salient features of this technology are – Combination of end-fire antennas with lens element to realize a highly efficient, small aperture, ultra-low profile millimetre wave module that can be installed anywhere. Industry’s thinnest height of less than 12mm which is significantly lower profile than conventional systems. [80%-90%] Easy installation with possibility of using narrow resin housing which are transparent to millimetre waves. Ability to detect multiple obstacles in poor visibility conditions such as snowstorms, fog and dust. The PoC of the system was done with the following specifications – Detection Range: Vehicle/Person at 90m/35m. FOV: Horizontal/Vertical of 120 deg/ 20 deg. Frame Rate: 25 fps Frequency: 76-81 GHZ with ability to select 60GHz based on application. The specifications can be adjusted by changing the antennae design to suit different applications. The lower profile of this radar allows it to be placed in locations where it was not possible to install a millimeter wave radar in the past. This enable its use in multiple new scenarios: Construction equipment. Outdoor surveillance / Intruder Detection. Disaster relief operations when mounted on helmets, goggles, and other wearables. Vehicles including cars, motorbikes, and bicycles. Robotic applications including drones and cleaning robots. Traffic surveillance systems. Privacy protected areas like bathrooms, toilets, nursing homes and others. Assisted mobility devices like wheelchairs. Cabin monitoring for sensing vitals. Millimetre wave radars are a key system for monitoring the surroundings in automotive ADAS (Advanced Driver Assistance System). The increased adoption has also been facilitated by reduction in cost of the radar IC and the use of single CMOS chip. The use of these radars in other sectors is expected to grow and for this, there is a need for ultra-low profile radars which are easier to install. The ultra low profile of this radar, achieved with the unique antennae technology, allows a lot of flexibility in the choice of installation location. It also opens up more use cases for the millimetre wave radar. When installed in a corner of the room or in a narrow space inside the wall , it allows privacy friendly monitoring of the condition of people. It can allow rescuers to sense and continue their operations in the dark and through smoke when installed on the helmets or goggles. In the healthcare sector, the ultra-low profile radar can be used for occupant monitoring and in acquiring contactless vital signs when installed inside the seat, under the rear-view mirror or the in the ceiling panel of the vehicle. Radar, mm Wave Radar, Low Profile Radar, Presence Detection Electronics, Sensors & Instrumentation, Radio Frequency, Green Building, Sensor, Network, Building Control & Optimisation, Infocomm, Internet of Things, Smart Cities
System for Testing Degradation in Bearings caused by Mechanical and Electrical Loads
Conventionally, the design consideration of bearings is very much driven by the mechanical loading condition. With the advancement of wide bandgap (WBG) power electronic devices and pulse-wide modulation (PWM) control techniques, the electrification of motor drive system has found wide applications due to its compact size and high-power conversion efficiency, such as electric vehicles and more-electric aircrafts. However, motor drive systems incorporating high-speed switching devices produce time-varying high-amplitude common-mode (CM) voltage, which results in undesirable CM current in the motor drive system that also flows through the bearings. This phenomenon causes frosting, fluting, and pitting on the bearing and leads to premature bearing failures, which results in unexpected downtime of critical systems. Existing bearing test systems focus on the impact of mechanical load on bearing degradation, but no comprehensive bearing test system is available to evaluate the bearing degradation due to both mechanical and electrical loads. A comprehensive test system with the ability to include the electrical load has been invented. The test system allows the life-span prediction of the bearing under varying electrical load conditions (pulsed current amplitude and repetition rate) at realistic operating conditions with adjustable axial force, rotational speed, and thermal conditions. The measurement data collected can be used to quantity the effectiveness of different bearing designs on extending the lifespan of the bearing under the influence of electrical load. The team is seeking a commercial partner to further develop and bring this technology into commercialization. The bearing test system consists of: (1) Bearing-holder on a rotating shaft; (2) Subsystem to emulate mechanical load; (3) Subsystem to emulate electrical load; (4) Data acquisition subsystem to monitor the vibration as an indicator of health degradation of the bearing-under-test; (5) Software algorithm to estimate the lifespan of the bearing-under-test. The test system has the following adjustable test conditions: (1) Rotational speed up to 2500 rpm; (2) Axial force up to 10 kN; (3) Pulsed circulating current in the bearing up to 3A peak; (4) Pulsed current frequency up to 10 kHz. The potential collaboration partners are test and certification laboratories and bearing manufacturers. The measurement data collected from the bearing test system help evaluate the quality and reliability of any motor-driven products consist of bearings. Therefore, it can be deployed in various industries where bearings are used, such as the automotive, aerospace industry, marine, and energy industries. The bearing test system generates valuable data and insights of the bearing health condition under varying electrical load conditions that can emulate different power ratings of the motor drive systems without building the full systems. It can assist to design and develop high-performance bearings that are immune to electrical loads. The potential customers of the test system are manufacturers of bearings, machinery and equipment manufacturers, electric vehicle manufacturers, and industries that use high-power motor drive systems. Bearings are virtually used in every kind of equipment or machinery, ranging from automobile parts, farm equipment, and household appliances to defence and aerospace equipment. The global bearing market size was valued at USD 111.59 billion in 2022 and is expected to grow at a compound annual growth rate (CAGR) of 10.6% from 2023 to 2030. As one of the major causes of machinery downtime and productivity loss, the issue of bearing failure has become increasingly important in various industries. Therefore, a comprehensive and cost-effective bearing test system becomes a valuable tool in the market. The current bearing test systems primarily concentrate on assessing the influence of mechanical load on bearing degradation. However, there have been no reported bearing test systems that incorporate both mechanical and electrical loads. To address this gap and evaluate the bearing degradation mechanism caused by advanced power electronic devices (i.e., the electrical load), a novel test system has been invented with the ability to include both the electrical and mechanical loads during testing.  Bearing Degradation, Bearing Performance Evaluation, Bearing lifespan prediction, Electrical Load Electronics, Power Management, Manufacturing, Assembly, Automation & Robotics
Sustainable Eco-Designed Flexible Packaging
This new packaging is a flexible packaging that is an all-encompassing option for several applications including cosmetics, food, consumer, and industrial products. Typically constructed with multi-layer materials to provide the necessary properties for structural integrity and protection of the packaged contents, these packaging products are not recyclable due to the variety of materials used. This technology offers a unique packaging solution that gathers all the advantages of existing packaging options (stand-up pouches, doypacks, bottles and tubes) while overcoming their limitations. Based on the concept of a pastry bag, the technology is a conical flexible pouch which is eco-friendly and 100% recyclable. Made of a mono-material, this eco-designed packaging utilises lesser materials (up to 70%), is ultra-compressible and suitable for all types of products from liquids to solids, making it adaptable to every sector’s needs. With an optimal restitution rate (no loss of contents), it can reduce wastage of the packaged contents and has been certified to reduce 70% of greenhouse gas emissions as compared to a conventional plastic bottle. The technology owner is interested to work with Singapore companies on R&D projects for sustainable packaging and out licensing opportunities to manufacture this patented eco-designed packaging product. This technology is a sustainable and innovative packaging product. Here are some key features of the packaging: Made from monomaterial (PE or PP) Designed to require less material than another packaging of equivalent volume (saves up to 70% less material) 100% recyclable, and can be compressed to take up very little space at the end of its life A paper version compatible with the paper recycling stream is under development Very high restitution rate, so there is very little product loss. Emits 2 to 5 times less greenhouse gas emissions than traditional packaging Suitable to package solids, pastes and liquid content Fully customisable Patented production process that was developed specifically for this packaging This innovative packaging technology allows businesses to reduce their environmental impact while still providing consumers with high-quality products. The eco-designed packaging solution can be customised (size, spout, materials, printing etc) according to the intended applications including (but not limited to): Food Cosmetics Industrial products Pharmaceutical Home care Personal care The plastic packaging market is a rapidly growing market, with a value of US$389.5 billion in 2021 and expected to reach US$559.1 billion by 2028. The 5.3% CAGR is being driven by several factors, including the increasing demand for convenience, the growth of e-commerce, and the rising awareness of environmental issues. This packaging is a real technological innovation in the packaging industry. It is the first packaging to combine three key factors: a recyclable material, a unique process, and a new product design. This makes it a truly unique and sustainable solution that can help to reduce plastic pollution. Fully sustainable packaging solution that comprises of a recyclable material, a unique process, and a new product design Contributes to the circular economy: the packaging is recyclable in current recycling streams (PP or PE) at its end of life. A paper version of the packaging is under development, and will be compatible with the paper recycling stream Proprietary process to produce the packaging reduces the amount of energy used Able to combine all the advantages of existing packaging products available whilst tackling inherent limitation The technology owner is interested to work with Singapore companies on R&D projects for sustainable packaging and out licensing opportunities to manufacture this patented eco-designed packaging product. recyclable, eco-friendly, packaging, flexible, pouch, bottle, tube, monomaterial, eco-design, cosmetics, food, pastry, personal care, home care, chemicals, materials, plastics, compressible, recycling Materials, Plastics & Elastomers, Chemicals, Polymers, Foods, Packaging & Storage, Sustainability, Circular Economy
Unique Tubular Solar Photovoltaic (PV) Technology for Agrivoltaic Farming
In a world where resources are diminishing and demands are rising, the value of land has significantly increased for clean energy and food production. Agrivoltaic farming represents a potential game-changing solution that can bring substantial benefits to both the energy and food sectors. The patented technology is a tubular solar photovoltaic (PV) module designed for agrivoltaic farming. The unique tubular nature of the system allows sunlight, water, and wind to reach the plants below while simultaneously harnessing solar power. Moreover, the tubular modules can provide consistent partial shading to protect the plants and reduce ambient temperature and ground moisture loss. This technology enables the dual use of land by integrating agricultural activities such as farming and gardening with solar power generation, maximising the value derived from the limited land. The combination of energy harvesting and agriculture has significant potential to improve farming productivity, increase land-use efficiency, reduce carbon emissions, and promote environmental sustainability. The technology owner is keen to collaborate with partners interested in agrivoltaic farming like farmers, gardeners, agritech companies, research centres, and ministries to test-bed and adopt their tubular solar PV technology. The technology owner is also seeking industrial partners (e.g., manufacturers, system integrators, architects, designers, etc) to co-develop a complete solar energy solution or integrate the tubular solar PV modules into specific use cases. The technology owner has developed an innovative tubular solar PV module that integrates flexible thin-film solar PV stripes into glass tubes arranged in parallel. The unique design allows for the permeation of sunlight, rain, and wind through the module. The key features of this technology are: Efficient sunlight utilisation: unique design allows it to capture more direct sunlight for electricity conversion Sunlight and rainwater permeability: increase productivity and crop yields Wind permeability: enable the usage of structures with lower load bearing, reducing the system cost Partial cooling shading: reduce moisture loss and protects the plants from excessive solar radiation Consistent protection: protect the plants below from heavy rain and hail damage Long-term reliability: monolithic PV cells continue work when partially damaged or shaded Self-cleaning capability due to cylindrical shape: reduce maintenance cost compared to conventional panels Modular design with various sizes: allow customisation for specific requirements and facility scalability Horizontal solar PV elevation: enable simple and fast installation (seamless array over large area) The potential applications include but are not limited to: Farms (agriculture, aquaculture, viticulture, horticulture, etc.) Gardens (open gardens, green roofs, etc.) Building façade and rooftop Greenhouses Natural parks, reservoirs, and lakes Other applications (EV charging stations, outdoor canopies, cabanas, pergolas, etc.) The patented technology offers the following unique features: Maximised land-use efficiency: dual use of the land High energy efficiency: constant direct sun exposure Optimised plant growth: light, water, and wind permeability High reliability and good long-term performance Low operating expense (OPEX): negligible maintenance Agrivoltaic Farming, Agrophotovoltaics, Agrisolar, Dual-Use Solar, Ultra Low Light Sensitive PV, Agrivoltaics Energy, Solar, Sustainability, Low Carbon Economy
Efficient Voltage Optimisation System for Electrical Energy Saving and Cost Reduction
Rising energy consumption and electricity costs pose significant challenges for all businesses, from light commercial to heavy industrial sectors. Moreover, sustainability has become a crucial component of corporate strategies, particularly within the framework of environmental, social, and governance (ESG). Electrical energy optimisation is not just about cost savings, but also an approach towards resource conservation, power stability, equipment protection, as well as sustainable development. The technology owner has developed a transformer-based voltage optimisation system to reduce energy consumption, optimise electrical power supply, extend equipment lifespan, and lower carbon emissions. This patented technology can control the voltage to an acceptable minimum level and keep the current within the optimum range for best efficiency, providing an immediate and practical way for energy savings. The technology owner is keen to collaborate with industrial partners such as building management, property owners, industrial facility management in manufacturing sectors, etc. The technology owner is also seeking OEM partners to integrate this technology into building management systems (BMS) or co-develop a complete energy saving solution. The core of this technology has the electronic controller regulating the direction of the current in the coil, balancing the phase voltage, and filtering the harmonics from reactive loads, to sustain the highest performance while minimising power loss. The features of this technology are: 8 – 12% reduction in power consumption and electricity bill Improve the quality of overall electrical power supply Over-voltage protection to prolong equipment lifespan Real-time remote monitoring and analysis by app Compact and modular design (easy installation and fast repair) Compatible for both indoor and outdoor installation Enable scalable and customisable adoption for property portfolios Completely self-sufficient solution with virtually unlimited lifespan The voltage optimisation system is applicable for both commercial and industrial applications, especially industrial sectors with energy intensive equipment like motors and cooling devices. The potential applications include but are not limited to: Commercial buildings (shopping malls, office buildings, markets, restaurants, hotels, etc.) Industrial facilities (factories, warehouses, chemical plants, fabrication plants, etc.) Other infrastructures (airports, hospitals, train stations, sports complexes, institutes, etc.) The patented technology offers the following unique features: 8-12% immediate energy savings High efficiency of 99.7% with low system losses Reduce maintenance cost by increasing equipment lifespan Remote monitoring for smart energy management Return on Investment (ROI) in 12-24 months Voltage Optimisation, Energy Saving, Cost Reduction Energy, Sensor, Network, Power Conversion, Power Quality & Energy Management, Electronics, Power Management, Sustainability, Low Carbon Economy
Privacy Friendly Indoor Living Body Localization Using IoT Microwave MIMO Radar
There is an increasing requirement for systems that can detect people in built up space. The requirements come from diverse fields such as safety, security and sustainability. In the field of safety, video cameras or wearables have conventionally been used and both come with significant downsides. Video cameras are highly dependent on the line of sight and are privacy invasive while wearables introduce a burden on the end user. Microwave radar-based solutions are a field of research which can overcome the downsides by being accurate, not burdening the end user and by removing the requirement of line-of-sight. The company provides algorithmic solution in this space based on microwave radar in a Multi Input Multi Output (MIMO) configuration. The solution utilizes biological activity including respiration and heartbeat and consequently does not require measurement of the static environment in advance. The technology consists of an algorithmic solution to allow detection of live bodies using microwave radar. The proof of concept was done using wireless routers with custom antennas. The solution provides a resolution of under 1m for localization. The solution is not dependent on ‘line of sight’. The solution does not require any additional setup process for measurement of static environment and only a simple installation step needs to be performed. Human position is detected based on ‘Angle of Arrival’ calculations. The solution allows shared use of Wi-Fi hardware making it cost competitive versus millimeter wave based solutions. The applications include but are not limited to: Child Safety Monitoring Presence Detection Living Body Localization Security and Intrusion Detection The technology offers a non-invasive and a convenient method of tracking live bodies in a built-up environment. The competing technologies in the space are either inconvenient requiring the person to carry an instrument on them or are invasive because of the use of video cameras. Other non-invasive solutions such as those based on infrared suffer from performance issues as they are adversely affected by environmental factors while the ones using radar and AI require a setup step to recognize the static environment. AI based solutions also lack the capability of localization. An additional advantage of the technology is that it uses standard Wi-Fi allowing routers to compliment or replace additional sensor installation requirements in some cases. Electronics, Sensors & Instrumentation, Radio Frequency, Healthcare, Medical Devices, Infocomm, Internet of Things, Wireless Technology
Harnessing Blowflies for Sustainable Solutions
Blowflies are insects often used for scientific research in fields such as forensics, veterinary science, ecology, and biology. Scientists study them at different stages of their lives, including maggots and adult blowflies.This technology relates to a fully operational and scalable multi-species insectary (Arthropod Containment Level 2) which focuses on harnessing the potential of non-medical blowflies for agricultural and waste management sectors. Firstly, blowfly maggots can be produced at scale to act as biodigesters to break down and convert agri-food waste or side streams to valuable blowfly insect protein. With additional processing, bioactive compounds can be extracted from these insect proteins with diverse applications in medicine and industry. When maggots mature into blowflies, they can be deployed for all-year-round insect pollination instead of bees. This can be conducted in controlled environments, including Indoor Vertical Farms, Greenhouses, and Polytunnels. This application has been validated with state-of-the-art UV lighting technology where blowflies are adept at locating flowers and conducting crucial pollination activities. The technology provider is actively seeking collaborative partnerships with stakeholders from the agriculture sector to enhance crop yields for farmers, while also aiming to collaborate with the waste management industry in order to minimize waste generation and transform it into valuable products through recycling. The insectary is designed with modularity and scalability, allowing for easy expansion or modification of the facility to accommodate various insect populations. It provides a fully contained environment that caters to all stages of the blowfly's life cycle, as well as other insects, ensuring proper housing and management. The insectary maintains a highly controlled environment that complies with Arthropod Containment Level 2 standards, operating as a no-odor facility with negative pressure, approved by National Environment Agency (Singapore). To optimize space utilization within the insectary and maintain separation between different insect populations, insects are carefully housed within netted cages stacked vertically. A specialized diet consisting of homogenized, strictly heterogeneous protein waste is provided to convert waste into valuable insect protein for diverse purposes. The insectary produces a substantial quantity of eggs necessary to sustain a closed-loop protein biodigester system, ensuring a continuous supply of insects for the biodigester. The insectary facilitates the emergence of newly developed blowflies, which can serve as alternative pollinators in Controlled Environment Agriculture (CEA), diversifying and enhancing pollination strategies for improved agricultural productivity. When complemented with a patented UV lighting technology, the insectary creates optimal environmental conditions for flower pollination, stimulating blowflies' active participation in the pollination process. Biodigesters: Blowfly maggots play a crucial role as biodigesters, efficiently converting waste protein into valuable insect protein. This sustainable process not only effectively manages waste but also yields a valuable protein source with diverse applications. Insect Pollinators: Blowflies can serve as effective insect pollinators, detecting flowers that are ready for pollination and being selectively recaptured and removed from indoor farming arenas after completing the pollination process. This innovative approach offers an alternative method of pollination, ensuring optimal crop production and enhancing agricultural sustainability. By harnessing the potential of blowfly maggots in these areas, there is an opportunity to explore innovative and sustainable solutions for both pollination and waste management. This exploration can lead to significant improvements in agricultural practices and resource utilization, contributing to enhanced sustainability in the agricultural sector. This technology also aims to revolutionize the aquaculture industry by eliminating disposables cost associated with waste management in a cost-effective and environmentally friendly manner. Waste Management Capability: The blowfly system is adept at handling high-protein waste, including offal and by-products generated from animal processing facilities like aquaculture. Unlike black soldier flies, blowflies excel specifically in breaking down protein waste. Their effectiveness in degrading protein-rich by-products makes them highly valuable for waste management in industries dealing with such materials. Continuous Supply and Expansion: The continuous supply of blowfly eggs ensures the expansion of current capabilities and guarantees long-term sustainability in waste management practices. This steady availability enables efficient and scalable operations. Ecological Compatibility: The insectary is designed to utilize native blowfly species in any country where it is established, ensuring ecological compatibility. By using local blowfly species, the system maintains harmony with the local ecosystem, promoting biodiversity and ecological balance. Versatile Applications of Insect Protein: Insect protein derived from blowflies serves as a sustainable source of fertilizers and can be further processed to extract bioactive compounds and enzymes. These valuable components meet the demands of medicinal and industrial sectors, expanding the potential uses and commercial value of insect protein beyond waste management. Year-round Pollination: Introducing blowflies as alternative pollinators enables year-round pollination activities, supporting agricultural production regardless of seasonal limitations. This consistent pollination fosters continuous crop growth and yield, contributing to agricultural sustainability. Enhanced Crop Quality and Value: Blowflies, as pollinators, contribute to the generation of better-quality crops, particularly fruiting crops, which command higher value in the market. This enhances the profitability of agricultural producers while meeting the growing demands for high-quality produce, resulting in improved economic outcomes for farmers.         Insectary, Pollination, Waste Valorisation, Agriculture, Biodigestor Life Sciences, Agriculture & Aquaculture, Waste Management & Recycling, Food & Agriculture Waste Management, Sustainability, Circular Economy
Maggot Debridement Therapy: An Effective and Accessible Biotherapeutics
With an ageing population and increased prevalence in diabetic onset, predisposition to chronic wounds including bed sores and diabetic foot ulcers poses a challenging situation for severe wound care management. Maggot Debridement Therapy (MDT), the oldest form of medicine has now re-emerged to be a promising treatment modality for chronic wounds. A biological tool, MDT serves as an alternative to surgical debridement. This involves the clinical use of sterile blowfly maggots to remove devitalized or necrotic tissues and reduce pathogen load. Topically applied to the chronic wound bed, this dressing facilitates better absorption, thereby providing an edge over existing interventions that lead to eventual amputations. Available in 2 forms, caged and uncaged, this live biodressing utilises natural biochemical processes of the blowfly larvae to conduct debridement that is comparable or better than conventional techniques in reducing critical wound healing time window. Uniquely designed to be used in both inpatient and outpatient settings, the biodressing enable surgical level debridement bedside, revolutionizing wound care with their precision and versatility. The technology provided include specifications on the operation of an ISO13485 laboratory, the Standard Operating Procedure (SOP) required for clinical usage of MDT as well as provision of training to the local clinicians on the use of MDT. The technology provider is looking to work with medical companies as well as government/medical institutions that are looking to have their patients under MDT to improve surgical outcomes, reduce the strain on the healthcare team and minimize costs associated with chronic wound care. Provision of SOP, Risk Assessment of an ISO13485 certified laboratory and insectary for the development of biodressing as a medical device globally.  Required documentation for local country registration, as per medical regulations. Provision of training for staff on the management of laboratory and insectary as per international standards (ISO13485). Comprehensive clinical documentation consisting of the placement, management, usage, and disposal of maggots. Techniques on the identification of local blowfly species, collection from habitat and method of laboratory sterilisation provided. Provision of essential QA techniques for the verification of biodressing to be safe and pathogen-free during both manufacture and transportation. Providing training to clinicians on the appropriate use and management of the biodressing. Clinical data obtained from the implementation of MDT shows promising patient outcomes and acceptance amongst the following: Patients deemed too high risk of surgery (i.e., poor blood supply) Diabetic patients with chronic wounds Non-healing wounds (i.e., ulcer injuries) Patients contraindicated for antibiotics With MDT, we are able to drive down amputation rates and clinically acquired infections to prepare the wound bed for accelerated healing and reduce time spent at the hospital. According to MarketsandMarkets, the global diabetes care devices market is poised to reach $4.3 Billion by 2025, growing at a CAGR of 16.2% from 2020 to 2025. With MDT, research studies have shown a threefold decrease in amputation rates. The effectiveness of MDT is evident through local clinical data that has demonstrated a limb salvage rate of 90.9% and a wound closure rate of 45.5% in a challenging patient population. With timely medical assistance rendered, risk of amputations is reduced, leading to a higher life expectancy and the element of quality being restored in their lives with confidence and independence.    Maggots exhibits accuracy and precision in the preparation of chronic wound beds, where it indiscriminately feeds on the necrotic tissues while leaving the healthy intact. Clinical studies on maggot therapy have shown that wounds are cleaned up to 18 times faster when compared to conventional methods that has increased rates of human error. Available in 2 forms: Free Range Larvae and Baggots (Maggots are enclosed within a sterile pouch with pores in the dressing to provide direct contact between larvae and wound bed).  Secretions from maggots have been reported to help reduce chronic inflammation and speed up the healing process. Cycling between MDT and Negative Pressure Wound Therapy (NPWT), the rate of wound healing is optimised, while reducing inflammatory exudate and promoting tissue granulation. MDT has been proven beneficial for high-risk patients with chronic wounds that does not respond well to surgical/conventional modes of wound debridement. This is backed up by statistics that shows a successful debridement after 4 weeks of MDT while necrotic tissues were observed even after 5 weeks of conventional therapies. Able to reach areas that are a challenge to access mechanically. Can be administered on patients outside the confinements of a healthcare facility. Maggot Debridement Therapy, Chronic wounds, Sterile medical-grade maggots, Efficacy, Cost Healthcare, Diagnostics, Medical Devices, Pharmaceuticals & Therapeutics
Method for Enhancing Lignocellulosic Biomass Side Stream Pre-treatment
Lignocellulosic biomass side streams derived from the agri-food value chain such as agricultural residues, have the potential to be converted into high-value products, including biofuel, bio-composite construction materials, and sustainable packaging. Among the various conversion processes, pre-treatment plays a crucial role in maximizing the value of lignocellulosic biomass. The primary objective of pre-treatment is to address the complex and heterogeneous structure of the biomass by removing lignin, reducing biomass size, and increasing the surface area for hydrolysis. Unfortunately, current pre-treatment methods for lignocellulosic biomass are energy-intensive, costly, and produce inhibitory compounds that impact subsequent production stages. To overcome these challenges, this technology offers a catalytic oxidation pre-treatment process. This innovative approach operates under ambient or mild conditions, with a short reaction time, resulting in reduced energy consumption and treatment costs. The technology provider is seeking interested parties from the agricultural, biofuels, or biogas industry to license this catalytic oxidation pre-treatment process to enhance their operations and achieve a more sustainable and cost-effective production of valuable products from lignocellulosic biomass. The pre-treatment technology incorporates alkaline solutions, oxidizing agents, and synthetic catalysts to break down the recalcitrant structure of biomass and release soluble lignin. Mild operating conditions @ 1 atm pressure and 40-50oC Requires lower concentration & smaller volume of chemicals @ < 1% (w/v) Short reaction time (2-3 hours) Inhibitory compounds such as furfural and 5-HMF (Hydroxymethylfurfural) are removed in the process through oxidation This technology is mainly applied to pre-treat residual biomass but can be extended to the following applications: Lignin extraction Municipal sludge Palm Oil Mill Effluent (POME) treatment Recalcitrant wastewater treatment The biofuel industry is expected to grow at a CAGR of 7.9% by 2033. As companies look for more sustainable fuels for vehicles that cannot be easily electrised, biofuels will be the most suitable alternative to fossil fuels to cut down on carbon emissions. Valorization of agricultural waste that is rich in lignocellulosic cells as second-generation biofuels is also gaining prominence. Hence, this pre-treatment technology will be highly relevant in the coming years. Up to 90% energy savings @ ambient working conditions No inhibitory products produced High selectivity on aromatic compounds such as lignin increases the delignification effectiveness Lignocellulose, biomass, agrifood, Residual biomass pre-treatment, agriculture waste valorization, side stream Waste Management & Recycling, Waste-to-Energy, Food & Agriculture Waste Management, Sustainability, Circular Economy