
Coastal regions are increasingly vulnerable to shoreline erosion and infrastructure damage caused by rising sea levels, stronger waves, and frequent storm surges. Conventional concrete breakwater designs often struggle under such harsh marine conditions due to inadequate interlocking, limited adaptability to diverse coastal profiles, and high maintenance demands.
This technology introduces geopolymer-based, geometrically optimized concrete armour units designed to enhance the stability, durability, and sustainability of coastal protection structures. By using fly ash–based geopolymer concrete, the technology not only reduces carbon emissions but also delivers superior interlocking performance and long-term resilience against dynamic wave forces, making it a sustainable solution for modern coastal defense.
The technology owner is seeking R&D collaborations with coastal engineering firms, infrastructure developers, and government agencies to co-develop, testbed, and commercialise this geopolymer-based armour unit technology, accelerating its deployment in sustainable coastal protection projects
The technology consists of geopolymer-based concrete armour units enhanced with fly ash to deliver superior stability, durability, and environmental performance for coastal protection applications.
Key features include: