Neural probes are used for capturing electrical activities and for exploring functional connectivity in the brain. For neural probes to be effective and be able to capture the activities happening at the scale of neural cells in vivo, they need to be small, made of bio-compatible material, and ideally, be flexible. This ensures that they do not trigger an inflammatory response or have a risk of breakage.
The technology presented here covers the requirements stated above for an ideal neural probe. The probes are flexible and allow superior precise targeting even with movement. The technology employed also avoids breaking and micromotion during the in-vivo trials. The probe’s design is also customizable for different requirements and can support combination of single/dual side, linear/tetrode, recording/stimulating/mixed and single/multi shank configurations for differing use cases. The probes can support up to 32 channels and provide multiple connectivity options for integration.
The probe has 8 to 32 nano-scale electrodes coated in biocompatible high-polymer materials. Its customizable channels can capture neural activities precisely and effectively in the electrochemical pool where neurons combine and communicate. Because of its nano-scale size, it can access the inner brain, such as the laboratory mouse’s hippocampus and motor cortex.
The company also has expertise in making durable biomaterial circuit boards. The neural probe is built upon a flexible printed circuit board (fPCB), so the user does not have to worry about neural probe breaking inside the brain tissue.
The following are some key technical features of the probe:
Probe physical size:
Shank size:
Electrode size:
Channels & adaptors:
The technology is suitable for applications in the field of medicine, bioengineering and neuroscience. The flexible probe can be used as a part of a more robust and precise measurement setup for monitoring and/or stimulating neural activity. The neural probe can safely be used in any current application requiring neural recording in in vivo or in vitro environment.
The technology offers a flexible neural probe which is customizable for use in different scenarios and experiments requiring neural monitoring and excitation. The main advantages of the technology can be summarized as: