Innovation Partner for Impact

Grow Your Business With Our Advisory Services

With a strong emphasis on fostering collaborations through technology and innovation, IPI seeks to empower businesses to embark on transformative journeys with our SME advisory services.

As a subsidiary of Enterprise Singapore, IPI accelerates the innovation journey of enterprises through access to its global innovation ecosystem and advisory services. We stand at the forefront of innovation-driven transformation, and our advisory services in Singapore are your key to unlocking growth and success for your business.

With a deep understanding of various industries and a track record of delivering impactful results, our advisory services for Singapore SMEs are designed to transform your vision into reality. Explore innovative technology and the available solutions to grow your business today!

Learn more about IPI >

Discover tech opportunities in our Innovation Marketplace

TECH OFFERS

View all >
A Novel and Natural Anti-Pathogenic Formulation.
The core technology is of a formulation that is an effective natural water based iodine multi-pathogenic solution that is designed to destroy various pathogens quickly. Although, the active ingredients are present at low levels, this formulation has been successful demonstrated from anecdotal evidence to provide protection. The product has been favourably shared by our global consumers on various media platforms. The IP involves the creation of a formulation that is novel in having a different and versatile broad spectrum ability to destroys different pathogens and their accompanying cellular survival structures simultaneously and quickly. It functions using diverse mechanisms of action via oxidative and complexation reactions. Additionally multiple prongs of attack leave little time to mount or develop resistance mechanisms, potentially hindering chances of resistant strains emerging.  It is anticipated that it would be widely used in a variety of settings for personal care and health care applications. Users to date have reported its successful application on a wide range of use cases e.g. for oral use, skin care, wound healing and as disinfectants. We are seeking partners to carry out test-bedding our various consumer claims in clinical trials, as well as carry as R&D collaboration to further explore new applications. We are also seeking partners who would be able to quickly manufacture and distribute our formulation. 
Smart Fistula Needle For Safe Fistula Cannulation And Other Vascular Procedures
Many vascular procedures such as central venous catheter insertion, dialysis catheter insertion, arterial angiograms, etc requires a skilled personnel to complete the task. A fistula used for example, in haemodialysis, is a direct connection of an artery to a vein. Once the fistula is created it is a natural part of the body. When the fistula properly matures, it provides an access with good blood flow that can last for decades. The gold-standard for access is an AV fistula. The success of an AV fistula procedure and vascular cannulation procedures depend on the skill of the medical professional. Potential difficulties during the procedure include: Multiple venepunctures attempts before successful cannulation Accidental puncture of the front vessel wall due to deep insertion Accidental puncture of the opposite side of the vessel wall while inserting the needle further upstream Inadvertent punction of the opposing vessels. Endovascular surgeons, therefore, need an improved device for penetrating the vessel wall during cannulation procedure. This technology is of a smart needle which can reliably gauge the intravascular position of distal end of the needle and detect vessel wall penetration. The device protects against needlestick accidents and accidental back walling of fistula wall.​ It avoids accidental puncturing of the opposing vessel wall and prevents accidental back-walling during the cannulation procedure by automatically deploying a smart sensing stylet after successful needle puncture of vessel wall. The technology owner is seeking for medical device manufacturers, clinical collaborators, and independent dialysis centres to conduct first-in-human studies.
Keratin Templates Derived from Hair and Feathers for Biomedical Applications
We have developed a variety of keratin templates for the healthcare sector namely sponges as tissue fillers, gels for wound healing, sutures and films as cell carriers. These keratin templates can be derived from keratinous wastes such as human hair and chicken feathers, which currently do not have significant commercial value and contribute to environmental pollution through disposal via incineration or landfills. Our technology involves the extraction of keratins from the organic waste streams mentioned, and fabricating various forms using solubilized keratins as the raw material. These materials have been shown to be cell compatible and evoke minimal host tissue response in animal studies. The templates we have developed represent a new class of alternative biomaterials which are functional and sustainable. 
Robotic Actuators for Human-Robot Interaction
Cutting-edge researchers are developing mobile robots that can engage with individuals in ever-changing surroundings, where constant physical interaction occurs with people and the environment. The design of robots for physical Human-Robot Interaction is an exceptionally demanding task, as it necessitates the incorporation of highly responsive and self-aware movement, strong torque capabilities, and agility, all while ensuring dependable and safe operation. The robotic actuators presented here offer high dynamic efficiency and control bandwidth to enable the creation of agile and efficient robots. These actuators incorporate electric motors that produce high torque with greater efficiency, aiming to achieve human-tier capable robots for physical Human-Robot Interaction.
AI Solution for Safety Management in High-Risk Industries or Workspaces
High-risk industrial sectors, notably the chemical industry, frequently experience severe safety incidents during production. Traditional risk management approaches, heavily reliant on manual efforts, often suffer from inadequate supervision, incomplete coverage, and suboptimal control. Addressing these challenges, the tech provider offers an advanced solution combining artificial intelligence technologies such as computer vision, the Internet of Things (IoT), and big data analytics. By utilizing existing enterprise cameras and sophisticated algorithmic servers, it establishes a video-based intelligent analysis platform for hidden risk management. This platform enhances overall safety through comprehensive risk perception, proactive hazard identification, predictive warnings, and visual decision-making aids, aiming for widespread and intelligent safety management across high-risk industrial environments.
Cost-Effective Wired Communication Technology Using Existing Wire
In the development of communication networks, various challenges emerge in achieving wireless signal coverage in certain areas, while the cost of deploying traditional wired Ethernet remains prohibitive in specific locations. Industries accustomed to slower wired communications now seek high-speed alternatives to facilitate IoT integration and enhance operational efficiency, yet they are hesitant to undertake extensive rewiring efforts. Building networks across diverse settings, including buildings, condominiums, and factories, often encounters significant cost hurdles. This is primarily due to the need for multiple Wi-Fi repeaters to cover areas with poor signal reach, as well as the requirement for numerous network switches and construction work involving cable installation under floors and above ceilings. A solution lies in technology that facilitates data communication over existing wires within facilities, such as flat cables, twisted pair wires, coaxial cables, and power lines. The effective communication speed varies from several Mbps to several tens of Mbps, depending on the type of cable and the wiring environment. Moreover, this technology seamlessly integrates with Wi-Fi, Ethernet, and other existing infrastructures, providing a cost-effective approach to network construction. By leveraging these technologies, it becomes feasible to establish society's network infrastructure at a reduced cost, particularly in challenging environments such as concrete structures, underground areas, tunnels, and spaces with metal walls.
Solar Reflective Aerogel Paint
Reducing heat transfer across surfaces within built environments and transportation units is critical for optimising energy efficiency in thermal comfort systems and mitigating associated costs and carbon emissions. Implementing measures to minimise heat transfer help maintain liveable thermal conditions and promote environmental sustainability. Some of the efficient methods for reducing heat transfer from the surrounding environment include reflecting solar radiation and providing thermal insulation to minimise heat conduction through surfaces. The technology offered here is a nano-engineered aerogel paint designed to reduce heat transfer across surfaces in the built environment. Unlike traditional solar reflectance paint that merely reflects sunlight, this paint actively minimises solar heat absorption, reducing the reliance on cooling and air conditioning systems and resulting in significant energy savings. Additionally, the paint provides excellent weather resistance and reduces maintenance costs by shielding against ultraviolet (UV) and infrared (IR) emissions, moisture, algae, and fungal growth. Its superior coverage capabilities of up to 3 square meter per liter per coat further contribute to cost savings and ensure long-lasting protection for various surfaces. With a proven track record in increasing energy efficiency for containerised offices and refrigeration trucks, the technology owner is now seeking to expand into other applications through on-site testbedding and performance trials. These include warehouses and building rooftop insulation, enhancing data center energy efficiency, and numerous other potential applications.
A Robust Cell Manufacturing Bioprocess For Clinical Usage
Bioprocessing technologies used in scaling manufacturing production typically uses scale-up and scale-out approaches through microcarrier-based stirred tank bioreactors, wave bags or cell stackers and multi-layered flasks. However, during the research and development process of cell and gene therapies, there is a significant technical gap between basic research methods and these manufacturing process development, which causes problems such as increase in time and cost of the development process. Cell and Gene Therapy manufacturing is an emerging area in the biopharmaceutical industry that must overcome high barriers of resource, capacity, and cost constraints. Therefore, it is extremely important to consistently consider and design a culture process from R&D to commercialization as a closed system with a certain size of scale-up and automation.  This technology introduces a robust and economically viable culture process in a closed culture system which comprises of an automated cell culture medium change device that can be installed in commercial CO2 incubators, where the device is coupled with a patented microwell bag and V-shaped adhesion cell culture bag, capable of both spheroid culture (3D) and adhesion culture (2D). This novel technology has established a culture method that meets the requirements of clinical use by improving sterility, reproducibility, and operability, and produces a large number of uniform-sized clusters. The technology owner is seeking partnerships and collaborations with institutions, hospitals, biotechnology and biopharmaceutical firms. 

TECH NEEDS

View all >
Seeking Fermentation Technologies for Sustainable Food Production
Fermentation is one of the oldest technologies used in food processing, Traditionally, fermentation was used as a method of preserving food, as well as imparting unique flavor profiles, such as in products like soy sauce or tempeh. In recent years, driven by the demand for a more sustainable food production system, fermentation is also studied for its applications in breaking down organic matter from indigestible to digestible nutrition for human consumption, growing biomass from the microorganisms used in the process, or producing specific target compounds like protein, fat or other nutrients. With Singapore’s ’30 by 30’ goal to produce 30% of our nutritional needs locally and sustainably by 2030, fermentation technologies are primed to play a key role in the food industry.
Seeking Solutions for Management and Treatment of Chronic Wounds
Diabetic foot ulcer is a devastating complication of diabetes mellitus and significant cause of mortality and morbidity all over the world and can be complex and costly. The development of foot ulcer in a diabetic patient has been estimated to be 19%-34% through their lifetime. The pathophysiology of diabetic foot ulcer consist of neuropathy, trauma and, in many patients, additional peripheral arterial disease. In particular, diabetic neuropathy leads to foot deformity, callus formation, and insensitivity to trauma or pressure. The management of DFU is usually complex and challenging to clinicians in clinical practice. The critical aspects of the wound healing mechanism and host physiological status in patients with diabetes necessitate the selection of an appropriate treatment strategy based on the complexity and type of wound. Additionally, costs of diabetic foot ulcerations have been increased to the treatment cost of many common cancers. Estimated costs of DFU management are greater than 1 billion in both developed and developing countries. Moreover, infection of a DFU frequently leads to limb amputation, causing significant morbidity, psychological distress and reduced quality of life and life expectancy. 
Seeking Non-Toxic Flame-Retardant Coating for Polymeric Materials
The increasing emphasis on fire safety regulations and standards, along with the growing awareness of the potential hazards posed by fires, has driven the demand for flame-retardant coatings. These coatings play important roles in fire protection by effectively slowing down the spreading of fires, thereby preventing catastrophic accidents, safeguarding assets, and saving lives. Industry segments such as electronics, automotive, aerospace, construction, and household, which extensively utilise materials prone to fire hazards, require effective fire protection solutions. As the demand for flame retardant coatings continues to rise across various sectors, the market is experiencing significant growth. According to MarketsandMarkets, the global flame retardants market is expected to be worth USD 9.5 billion by 2028, with a compound annual growth rate (CAGR) of 5.2%. Particularly, the Asia Pacific region is the fastest-growing market.   Traditional flame retardants, especially those containing brominate or chlorine, have been associated with their impacts on the environment and human health. Consequently, the demand for environmentally friendly coating solutions, such as nanocomposites and natural bio-based retardants, is growing at a rapid pace. However, the performance, efficiency, environmental impact, and cost-effectiveness of these alternative materials are still hot topics of ongoing research. This tech need calls for non-toxic and innovative flame-retardant coatings capable of addressing the above challenges. Such coating solutions should be available for test-bedding, licensing, and co-development with industrial partners, paving the way for safer and more sustainable fire protection methods.
Seeking Reflective Cool Paint Technology for Green Buildings
In Southeast Asia, the growing focus on sustainable construction practices calls for increased demand on energy conservation and efficiency improvement solutions. As a technology and innovation hub, Singapore takes the lead by setting the “80-80-80 in 2030” targets that relates to raising the sustainability standards of existing buildings and requiring new buildings to meet the super low energy (SLE) standard. There are generally two main approaches to achieving the above targets, 1) by adopting active energy efficiency improvement solutions - solutions that are using or producing energy, e.g., chiller plant optimisation systems, energy recovery/storage systems, etc, and 2) by employing passive energy efficiency improvements, e.g., adding insulation or non-energy consuming means to reduce the thermal transmittance of the building structure. One of the notable solutions of passive energy efficiency improvements is the use of reflective cool paint on the exterior structures of the building, which has an estimated global market size of close to USD700m in 2023 and is projected to reach about USD900m by 2029, according to a recent study by 24ChemicalResearch. Reflective cool paint refers to paint/coating materials that achieves cooling effect by reflecting more sunlight and absorb less heat as compared to conventional paint/coating materials. It contains reflective pigments and additives that reflect a significant portion of the sun's rays in specific wavelengths back into the atmosphere. In tropical climate, some of the key challenges for reflective cool paint include the need to adhere to diverse building surface substrates that can vary substantially, inclement weather, damaging UV rays and water permeation. All these environmental stresses lead to cracking and delamination, contributing to performance degradation of the reflective cool paint. This Tech Need calls for reflective cool paint solutions that may address partial or most of the challenges mentioned above, and that is available for test-bedding or co-development collaborations to further adapt the reflective cool paint for tropical climate applications.

Our Corporate Partners

OSIM
Panasonic Group
Haier

Our Success Stories

Learn how our innovation services have enabled organisations to succeed in their innovation journey.

Impact for LOGISTICS

Teaming Up to Reignite Growth in Cold-Chain Solutions
"If you want to go fast, go alone. If you want to go far, go together." This saying rings true in the world of business, where collaboration often proves to be the key to long-term success. For packaging company Aeris Dynamics, a global leader in cold chain solutions, this quote encapsulates their journey towards growth with the support of IPI....

Impact for MANUFACTURING

The Path to Enterprising in the Electronics Industry
Independent electronics design house Advinno Technologies explores new business offerings and reinforces its core strengths with industry veteran and IPI Innovation advisor CK Tan.   In the 1960s, Singapore became home to Southeast Asia’s only television assembly plant. Today, the country houses 2,900 electronics manufacturing and designing companies. The industry continues to be a major driving force to Singapore’s economy...

Impact for ENERGY & ENVIRONMENT

Giving Batteries New Life, Powering A Sustainable Future
Singapore-based KGS Pte Ltd partners with UK-based Altilitech Ltd under the UK–Singapore Collaborative R&D Call 2022 to advance lithium-ion battery recycling, powering a circular economy in the energy sector.   As nations all over the globe race towards net-zero emissions, sustainability is no longer a choice but an imperative. Singapore-based KGS Pte Ltd is leading the charge in such initiatives...